close
close
Wed. Oct 23rd, 2024

Crystal structure of 4-hydroxybutyryl-CoA synthetase (ADP-former) from nitrosopumilus maritimus

Crystal structure of 4-hydroxybutyryl-CoA synthetase (ADP-former) from nitrosopumilus maritimus

  • Friedlingstein P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedback. J. Klim. 27511–526 (2014).

    Google Scholar article

  • Berg I.A. Ecological aspects of the distribution of various autotrophic COs2 fixation paths. Adj. Environment. Microbiol. 771925–1936 (2011).

    CAS article PubMed PubMed Central Google Scholar

  • Ducat, DC and Silver, PA Improving carbon fixation pathways. Well. Opinion. chem. Biol. 16337–344 (2012).

    CAS article PubMed PubMed Central Google Scholar

  • Berg I.A., Ramos-Vera V.H., Petri A., Huber H. and Fuchs G. Study of autotrophic CO distribution2 fixation cycles in Crenarchaeota. Microbiology 156256–269 (2009).

    Article PubMed Google Scholar

  • Herter, S., Fuchs, G., Bacher, A. and Eisenreich, W. Bicyclic autotrophic CO.2 Pathway of fixation in chromoflexus aurantiacus. J. Biol. chem. 27720277–20283 (2002).

    CAS article PubMed Google Scholar

  • Huber, H. et al. The autotrophic dicarboxylate/4-hydroxybutyrate carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Textbook Natl Acad. Sci. 1057851–7856 (2008).

    CAS article PubMed PubMed Central Google Scholar

  • Sanchez-Andrea I. et al. The reductive glycine pathway mediates autotrophic growth of Desulfovibrio desulfuricans. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-18906-7 (2020).

  • Kenneke M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO release.2 fixation. Textbook Natl. acad. Sci. 1118239–8244 (2014).

    Article PubMed PubMed Central Google Scholar

  • Ingalls, A.E. et al. Quantitative assessment of autotrophy of an archaeal community in the mesopelagic ocean using natural radiocarbon. Textbook Natl. acad. Sci. 1036442–6447 (2006).

    CAS article PubMed PubMed Central Google Scholar

  • Hawkins, A.B. et al. Bioprocessing Analysis of Pyrococcus Furiosus Strains Engineered for CO2based on the production of 3-hydroxypropionate. Biotechnology. Bioeng. 1121533–1543 (2015).

    CAS article PubMed PubMed Central Google Scholar

  • Berg, I. A., Kockelkorn, D., Bakel, W. and Fuchs, G. The autotrophic 3-hydroxypropionate/4-hydroxybutyrate carbon dioxide assimilation pathway in archaea. Science 3181782–1786 (2007).

    CAS article PubMed Google Scholar

  • Alber, B.E., Kung, J.W. and Fuchs, G. 3-hydroxypropionyl coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO.2 fixation. J. Bacteriol. 1901383–1389 (2007).

    Article PubMed PubMed Central Google Scholar

  • Ramos-Vera, V.H., Weiss, M., Strittmatter, E., Kockelkorn, D. and Fuchs, G. Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota. J. Bacteriol. 1931201–1211 (2010).

    Article PubMed PubMed Central Google Scholar

  • Hawkins A.S., Han Y.-T., Bennett R.C., Adams M.W.W. and Kelly R.M. Role of 4-hydroxybutyrate-CoA synthetase in CO2 The fixation cycle in thermoacidophilic archaea. J. Biol. chem. 2884012–4022 (2013).

    CAS article PubMed Google Scholar

  • Loder, A.J. and Han et al. Analysis of the reaction kinetics of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea. Metab. English 38446–463 (2016).

    CAS article PubMed PubMed Central Google Scholar

  • Berg, P. and Newton, G. Acyl adenylates: an enzymatic mechanism for acetate activation. J. Biol. chem. 222991–1013 (1956).

    CAS article PubMed Google Scholar

  • Berg, P. Acyl adenylates; synthesis and properties of adenyl acetate. J. Biol. chem. 2221015–1023, https://pubmed.ncbi.nlm.nih.gov/13367068/ (1956).

    CAS article PubMed Google Scholar

  • Brazen, K., Schmidt, M., Grotzinger, J. and Schönheit, P. Reaction mechanism and structural model of ADP-forming acetyl-CoA synthetase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. chem. 28315409–15418 (2008).

    Article PubMed PubMed Central Google Scholar

  • Fraser, M.E., James, M.N.H., Bridger, V.A. and Volodko, V.T. Detailed structural description of Escherichia coli11 succinyl-CoA synthetase. Edited by D. Rees. J. Mol. Biol. 285163998.2324 (1999).

    Google Scholar article

  • Weisse, R.H.J., Faust, A., Schmidt, M., Schönheit, P., and Scheidig, A.J. The structure of the NDP-forming acetyl-CoA synthetase ACD1 reveals a large rearrangement for phosphoryl transfer. Textbook Natl Acad. Sci. 113E519–E528 (2016).

    Article PubMed PubMed Central Google Scholar

  • Volodko V.T., Fraser M.E., James M.N. and Bridger W.A. Crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5 Å resolution. J. Biol. chem. 26910883–10890 (1994).

    CAS article PubMed Google Scholar

  • Hohl, W.G.J., Duinen, van and Berendsen, H.J.K. α-helix dipole and properties of proteins. Nature 273443–446 (1978).

    Article PubMed Google Scholar

  • Thompson, M.J. and Eisenberg, D. Transproteomic evidence for a mechanism of loop deletion to increase protein thermostability. J. Mol. Biol. 290595–604 (1999).

    CAS article PubMed Google Scholar

  • Sorensen, B.R., Faga, L.A., Hultman, R., and Shea, M.A. The interdomain linker increases the thermostability and reduces the calcium affinity of the calmodulin N domain. Biochemistry 4115–20 (2001).

    Google Scholar article

  • Sanchez, L.B., Galperin, M.Yu. and Müller, M. Acetyl-CoA synthetase from the amitochondrial eukaryote Giardia belongs to the recently recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming). J. Biol. chem. 275, 5794–5803 2000).

  • Elkins, J.G. etc. The korarchaeal genome provides insight into the evolution of archaea. Textbook Natl. acad. Sci. 1058102–8107 (2008).

    CAS article PubMed PubMed Central Google Scholar

  • Qin, W. et al. Nitrosopumilus maritimus gen. November, sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov. and Nitrosopumilus ureiphilus sp. nov., four ammonia-oxidizing marine archaea from the phylum Thaumarchaeota. Int. J. Syst. Evolute. Microbiol. 675067–5079 (2017).

    Google Scholar article

  • Lopez-Garcia P, Zivanovic Y, Deschamps P and Moreira D. Bacterial gene import and mesophilic adaptation in archaea. Nat. Rev. Microbiol. 13447–456 (2015).

    Article PubMed PubMed Central Google Scholar

  • Fan, F. et al. On the catalytic mechanism of human ATP-citrate lyase. Biochemistry 515198–5211 (2012).

    CAS article PubMed Google Scholar

  • Atalay N. et al. Cryogenic X-ray crystallographic studies of biomacromolecules on the Turkish light source “Turkish Delight”. Turetsky J. Biol. 471–13 (2023).

    CAS Google Scholar article

  • Kabsh, V. XDS. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66125–132 (2010).

    CAS Google Scholar article

  • Lee, K.-Y. et al. A new ATP-dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. ELlife10. https://doi.org/10.7554/elife.64045 (2021).

  • Adams, P.D. et al. PHENIX: a comprehensive Python-based system for solving the structure of macromolecules. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66213–221 (2010).

    CAS Google Scholar article

  • Emslie, P. and Coutan, K. Coote: Modeling tools for molecular graphics. Acta Crystallogr. Sect. D. Biol. Crystallogr. 602126–2132 (2004).

    Google Scholar article

  • Tamura, K. et al. MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evolution 282731–2739 (2011).

    CAS Google Scholar article

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-based gap penalties, and weight matrix selection. Nucleic Acids Res. 224673–4680 (1994).

    CAS article PubMed Google Scholar

  • Letunik, I. and Bork, P. Interactive Tree of Life (iTOL) v5: an online tool for displaying and annotating a phylogenetic tree. Nucleic Acids Res. 49W293–W296 (2021).

    CAS article PubMed PubMed Central Google Scholar

  • Yariv B. et al. Using evolutionary data to understand macromolecules using an “updated” ConSurf. Protein Science. https://doi.org/10.1002/pro.4582 (2023).

  • Karner M.B., DeLong E.F. and Karl D.M. Dominance of archaea in the mesopelagic zone of the Pacific Ocean. Nature 409507–510 (2001).

    CAS article PubMed Google Scholar

  • Santoro A.E., Casciotti K.L. and Francis K.A. Activity, abundance, and diversity of nitrifying archaea and bacteria in the central California Current. Environment. Microbiol. 121989–2006 (2010)

    CAS article PubMed Google Scholar

  • Wuchter S. et al. Archaeal nitrification in the ocean. Textbook Natl. acad. Sci. 10312317–12322 (2006).

    CAS article PubMed PubMed Central Google Scholar

  • Zahn, M. et al. Structures of 2-hydroxyisobutyric acid-CoA ligase reveal determinants of substrate specificity and describe a multiconformational catalytic cycle. J. Mol. Biol. 4312747–2761 (2019).

    CAS article PubMed Google Scholar

  • Destan E. et al. Structural information on bifunctional crotonyl-CoA hydratase from thaumarchaea and 3-hydroxypropionyl-CoA dehydratase from Nitrosopumilus maritimus. Sci. Representative 11 https://doi.org/10.1038/s41598-021-02180-8 (2021).

  • De Mirchi, H. et al. Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key archaeal carbon fixation enzyme. BioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2020.02.05.935528 (2020).

  • Huang J. and Fraser Meng Succinate is bound to porcine GTP-specific succinyl-CoA synthetase. https://doi.org/10.2210/pdb5cae/pdb (2016).

  • Verschueren, K.H. and others. The structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568571–575 (2019).

    CAS article PubMed Google Scholar

  • Related Post